Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research

Vasilis Fthenakis

Center for Life Cycle Analysis Columbia University and National Photovoltaics Environmental Research Center Brookhaven National Laboratory

www.clca.columbia.edu www.pv.bnl.gov

Photovoltaic Global Sales and Projections

Source: PV Market Outlook European Photovoltaic Industry Association 2009

A Solar Grand Plan

PV Capacity Projections: United States 2030

DOE-EERE Solar Vision Study Report is in review, not to be cited

PV-Sustainability Criteria

Affordability - Cost Reductions

Prices and Production Costs of PV Modules

Affordability: Projected PV Growth and Electricity Price Targets

Source: J. Lushetsky, Solar Technologies Program, US-DOE, 25th EUPV, Valencia, Spain, Sept. 2010

Tellurium for PV* from Copper Smelters

•Global Efficiency of Extracting Te from anode slimes increases to 80% by 2030 (low scenario); 90% by 2040 (high scenario)

* 322 MT/yr Te demand for other uses has been subtracted All the growth in Te production is allocated to PV

Te Availability for PV: Primary + Recycled

Fthenakis V., Renewable & Sustainable Energy Reviews 13, 2746, 2009

CdTe PV Production Constraints

Annual (GW/yr)

Cumulative (TW)

Fthenakis V., Renewable & Sustainable Energy Reviews 13, 2746, 2009

Life Cycle Environmental Impacts

Life Cycle Environmental Impacts

Experimental Research at BNL

Comparative Life-Cycle Analysis

Energy Payback Times (EPBT) Greenhouse Gas Emissions Resource Use (materials, water, land) EH&S Risks

Zero impact technology does not exist → Compare with other energy producing technologies as benchmarks

Energy Payback Times (EPBT)

Insolation: 1700 kWh/m2-yr

Based on data from 13 US and European PV manufacturers

- Fthenakis et al., EUPV, 2009
- deWild 2009, EUPV, 2009
- Alsema & de Wild, Material Research Society, Symposium, 895, 73, 2006
- deWild & Alsema, Material Research Society, Symposium, 895, 59, 2006
- Fthenakis & Kim, Material Research Society, Symposium, 895, 83, 2006
- Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006

Greenhouse Gas (GHG) Emissions

Insolation: 1700 kWh/m2-yr

- Fthenakis & Kim, Encyclopedia of Energy, in press
- deWild 2009, EUPV, 2009
- Fthenakis et al., EUPV, 2009
- Fthenakis & Kim, ES&T, 42, 2168, 2008
- Alsema & de Wild, Material Research Society, Symposium, 895, 73, 2006
- deWild & Alsema, Material Research Society, Symposium, 895, 59, 2006
- Fthenakis & Kim, Material Research Society, Symposium, 895, 83, 2006
- Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006

GHG Emissions from Life Cycle of Electricity Production: Comparisons

Dual and Ecological-friendly Use of Land

Sinzheim, Germany, with permission from Juwi, 2006 1.4MW

More Land is used by the Coal Life Cycle than PV

PV Plant, Tucson Electric Power, Springerville, Arizona Mountain Top Coal Mining Rawl, West Virginia

Land requirement for PV in the SW: 310 m²/GWh

Land requirement for US surface coal mining: 320 m²/GWh

Fthenakis V. and Kim H.C., Sustainable and Renewable Energy Reviews, 2009

CdTe PV Product Life – Accidental Releases

Leaching from shuttered modules

- 7 10 mm fragments -Rain-worst-case scenario- " leached Cd concentration in the collected water is no higher than the German drinking water concentration." (Steinberger, <u>Frauhoffer Institute Solid State Technology</u>, Progress in Photovoltaics, 1998)
- < 4 mm fragments "Leached Cd exceeds the limits for disposal in inert landfill but is lower than limits for ordinary landfills" (Okkenhaug, <u>Norgegian Geotechnical Institute</u>, Report, 2010)
- *Contents Content C*

	All PV modules would fail the California tests		
	c-Si for Ag, Pb, and Cu (ribbon), CIGS for Se; a-Si marginally for Ag Eberspacher & Fthenakis, 26 th IEEEPVSC, 1997;		
We advocate for all PV modules to be recycled at the end of their life			

CdTe PV Product Life – Accidental Releases

PV Roof-top fires

Negligible emissions during fires

Fthenakis, Renewable and Sustainable Energy Reviews, 2004,

Fthenakis et al., Progress in Photovoltaics, 2005

Based on standard protocols by the ASTM and UL Expert Peer reviews by: BNL, US-DOE, 2004 EC-JRC, 2004 German Ministry of the Environment, (BMU), 2005 French Ministry of Ecology, Energy, 2009

CdTe PV Fire-Simulation Tests: XRF Analysis

Fthenakis, Fuhrman, Heiser, Lanzirotti, Fitts and Wang, Progress inPhotovoltaics, 200521

XRF-micro-probing -Cd & Zr distribution in PV sample Unheated Sample -Vertical Cross Section

22

XRF-micro-probe -Cd distribution in PV sample 760 °C, Section taken from middle of sample

XRF-micro-probe -Cd distribution in PV sample 1000 °C, Section taken from middle of sample

XRF-micro-probing -Cd distribution in PV sample 1000 °C, Section taken from right side of sample

XRF-micro-probing -Cd distribution in PV sample 1100 °C, Section taken from middle of sample

Atmospheric Cd Emissions from the Life-Cycle of CdTe PV Modules – Reference Case

Process		(g Cd/ton Cd*)	(%)	(mg Cd/GWh)
1. Mining of Zn ores		2.7	0.58	0.02
2. Zn Smelting/Refining		40	0.58	0.30
3. Cd purification		6	100	7.79
4. CdTe Production		6	100	7.79
5. CdTe PV Manufacturi	ng	0.4*	100	0.52*
6. CdTe PV Operation		0.05	100	0.06
7. CdTe PV Recycling		0.1*	100	0.13*
TOTAL EMISSIONS				16.55

* 2009 updates

Fthenakis V. Renewable and Sustainable Energy Reviews, 8, 303-334, 2004

Total Life-Cycle Cd Atmospheric Emissions

28

End-of-life Issues of PV modules

Rapid growth of PV market will result in an eventual waste disposal issue 25+ years after module installation

Potential of environmental impacts from uncontrolled disposal of PV

Recycling of Spent Modules

PV recycling will resolve environmental concerns and will create secondary sources of materials that benefit the environment

CdTe PV recycling is technically and economically feasible

The Triangle of Success

- Major PV Sustainability metrics include cost, resource availability, and environmental impacts
- These three aspects are closely related; recycling spent modules will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth
- Environmental sustainability should be examined in a holistic, life cycle, comparative framework

